Quantum pathology of static internal imperfections in flawed quantum computers
نویسندگان
چکیده
Even in the absence of external influences the operability of a quantum computer (QC) is not guaranteed because of the effects of residual one– and two–body imperfections. Here we investigate how these internal flaws affect the performance of a quantum controlled-NOT (CNOT) gate in an isolated flawed QC. First we find that the performance of the CNOT gate is considerably better when the two–body imperfections are strong. Secondly, we find that the largest source of error is due to a coherent shift rather than decoherence or dissipation. Our results suggest that the problem of internal imperfections should be given much more attention in designing scalable QC architectures.
منابع مشابه
Manifold algorithmic errors in quantum computers with static internal imperfections
The inevitable existence of static internal imperfections and residual interactions in some quantum computer architectures result in internal decoherence, dissipation, and destructive unitary shifts of active algorithms. By exact numerical simulations we determine the relative importance and origin of these errors for a Josephson charge qubit quantum computer. In particular we determine that th...
متن کاملFault-tolerant quantum error detection
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical...
متن کاملQuantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections
We determine the universal law for fidelity decay in quantum computations of complex dynamics in presence of internal static imperfections in a quantum computer. Our approach is based on random matrix theory applied to quantum computations in presence of imperfections. The theoretical predictions are tested and confirmed in extensive numerical simulations of a quantum algorithm for quantum chao...
متن کاملDynamics of entanglement in quantum computers with imperfections.
The dynamics of the pairwise entanglement in a qubit lattice in the presence of static imperfections exhibits different regimes. We show that there is a transition from a perturbative region, where the entanglement is stable against imperfections, to the ergodic regime, in which a pair of qubits becomes entangled with the rest of the lattice and the pairwise entanglement drops to zero. The tran...
متن کاملEnergy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008